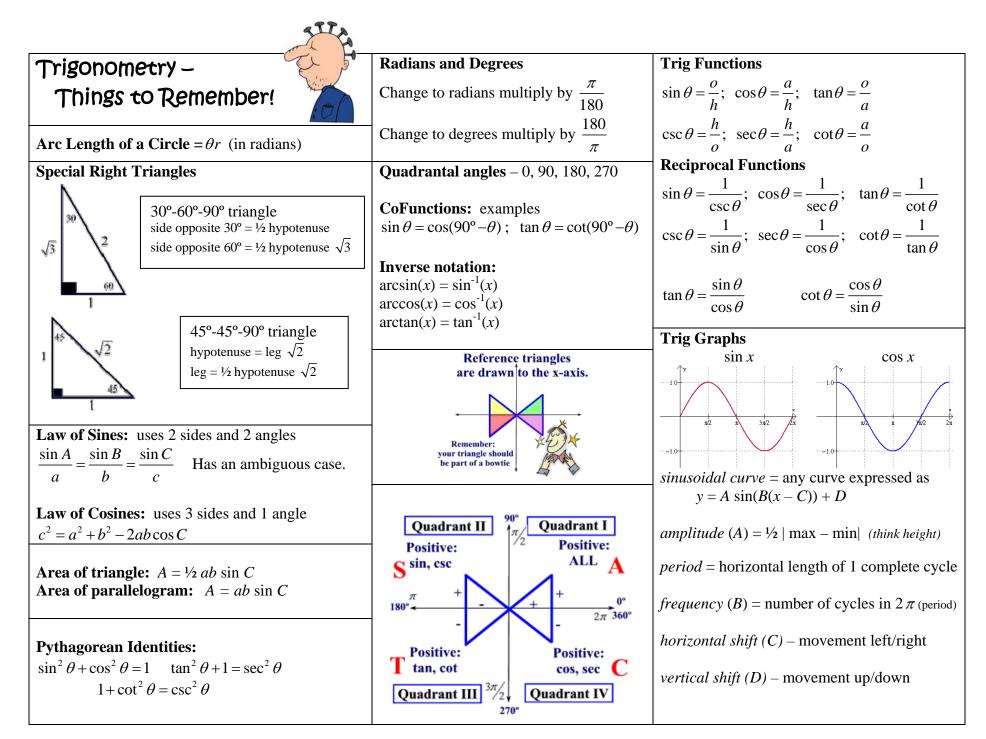
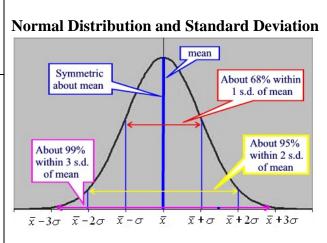
Algebra 2 – Things to Rer	nember!	I A		
Exponents:	Complex Numbers:	X	Logarithms	Properties of Logs:
$x^0 = 1 \qquad \qquad x^{-m} = \frac{1}{x^m}$	$\int \sqrt{-1} = i \qquad \sqrt{-a} = i\sqrt{a}; a \ge 0$	0	$y = \log_b x \Leftrightarrow x = b^y$	$\log_b b = 1 \qquad \log_b 1 = 0$
$x^{m} \bullet x^{n} = x^{m+n} \qquad \qquad x^{m}$ $x^{m} \bullet x^{n} = x^{m+n} \qquad \qquad (x^{n})^{m} = x^{n \bullet m}$ $\frac{x^{m}}{x^{n}} = x^{m-n} \qquad \qquad \left(\frac{x}{y}\right)^{n} = \frac{x^{n}}{y^{n}}$ $(xy)^{n} = x^{n} \bullet y^{n}$	$i^{2} = -1 \qquad i^{14} = i^{2} = -1 \text{ divide exponsion}$ by 4, use remainder, solv (a+bi) conjugate (a-bi) $(a+bi)(a-bi) = a^{2} + b^{2}$ $ a+bi = \sqrt{a^{2} + b^{2}}$ absolute value=magn	ve.	$\ln x = \log_{e} x \text{ natural log}$ $e = 2.71828$ $\log x = \log_{10} x \text{ common log}$ Change of base formula: $\log_{b} a = \frac{\log a}{\log b}$	$\log_{b}(m \cdot n) = \log_{b} m + \log_{b} n$ $\log_{b}\left(\frac{m}{n}\right) = \log_{b} m - \log_{b} n$ $\log_{b}(m^{r}) = r \log_{b} m$ Domain: $\log_{b} x \text{ is } x > 0$
Factoring: Look to see if there is a GCF (greatest common factor) first. $ab + ac = a(b+c)$ $x^2 - a^2 = (x-a)(x+a)$ $(x+a)^2 = x^2 + 2ax + a^2$ $(x-a)^2 = x^2 - 2ax + a^2$ Factor by Grouping: $x^3 + 2x^2 - 3x - 6$ $(x^3 + 2x^2) - (3x+6)$ group $x^2(x+2) - 3(x+2)$ factor each $(x^2 - 3)(x+2)$ factor	Exponentials $e^x = \exp(x)$ $b^x = b^y \rightarrow x = y$ ($b > 0$ and $b \neq 1$) If the bases are the same, set the exponents equal and solve. Solving exponential equations: 1. Isolate exponential expression. 2. Take <i>log</i> or <i>ln</i> of both sides. 3. Solve for the variable. $\ln(x)$ and e^x are inverse functions $\ln e^x = x$ $e^{\ln x} = x$ $\ln e = 1$ $e^{\ln 4} = 4$ $e^{2\ln 3} = e^{\ln 3^2} = 9$	Solve $x = -$ Squa Com 1. If 0 2. Mo 3. Ta 4. Fa 5. Us	$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $b^2 - 4ac$ $b^2 - 4ac$ bre root property: If $x^2 = m$, the pleting the square: $x^2 - 2x$ other than one, divide by coefficient by constant term to other side x^2 ke half of coefficient of x , square it, $x^2 - 2x + [1] = 3$ ctor perfect square on left side. (2)	square, quadratic formula. > 0 two real unequal roots = 0 repeated real roots < 0 two complex roots en $x = \pm \sqrt{m}$ x - 5 = 0 x - 5 = 0 x - 5 = 3 add to both sides 5 + [1] $(x - 1)^2 = 6$ get two answers. $x = 1 \pm \sqrt{6}$
Variation: always involves the constant of proportionality, k. Find k, and then proceed. Direct variation: $y = kx$ Inverse variation: $y = \frac{k}{x}$ Varies jointly: $y = kxj$ Combo: Sales vary directly with advertising and inversely $y = \frac{ka}{c}$ with candy cost.	Absolute Value: $ a > 0$ $ a = \begin{cases} a; & a \ge 0 \\ -a; & a < 0 \end{cases}$ $ m = b \implies m = -b \text{ or } m = b$ $ m < b \implies -b < m < b$ $ m > b \implies m > b \text{ or } m < -b$	Ineq critic	of roots: $r_1 + r_2 = -\frac{b}{a}$ Produlities: $x^2 + x - 12 \le 0$ Char al points on number line, check (x + 4)(x - 3) x = -4; x = false true WER: $-4 < x < 3$ or [-4,	nge to =, factor, locate ck each section. = 0

Radicals: Remember to use fractional exponents. $a\sqrt[n]{x} = x^{\frac{1}{a}}$ $x^{\frac{m}{n}} = \sqrt[n]{x^m} = \left(\sqrt[n]{x}\right)^m$ $\sqrt[n]{a^n} = a$ $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ Simplify: look for perfect powers. $\sqrt{x^{12}y^{17}} = \sqrt{x^{12}y^{16}y} = x^6y^8\sqrt{y}$ $\sqrt[n]{a^2y^{17}} = \sqrt{x^{12}y^{16}y} = x^6y^8\sqrt{y}$	Working with Rationals (Fract Simplify: remember to look for a factoring $\frac{3x-1}{1-3x} = \frac{-1(-3x+1)}{1-3x} = -1$ Add: Get the common denominat Factor first if possible: Multiply and Divide: Factor First		Solving Rational Equations: Get rid of the denominators by mult. all terms by common denominator. $\frac{22}{2x^2-9x-5} - \frac{3}{2x+1} = \frac{2}{x-5}$ multiply all by $2x^2 - 9x - 5$ and get 22 - 3(x-5) = 2(2x+1) 22 - 3x + 15 = 4x + 2
$\sqrt[3]{72x^9y^8z^3} = \sqrt[3]{8\cdot9x^9y^6y^2z^3} = 2x^3y^2z\sqrt[3]{9y^2}$ Use conjugates to rationalize denominators: $\frac{5}{2+\sqrt{3}} \cdot \frac{2-\sqrt{3}}{2-\sqrt{3}} = \frac{10-5\sqrt{3}}{4-2\sqrt{3}+2\sqrt{3}-\sqrt{9}} = 10-5\sqrt{3}$ Equations: isolate the radical; square both sides to eliminate radical; combine; solve. $2x-5\sqrt{x}-3=0 \rightarrow (2x-3)^2 = (5\sqrt{x})^2$ $4x^2-12x+9=25x \rightarrow solve: x=9; x=1/4$	Rational Inequalities $\frac{x^2 - 3x - 15}{x - 2} \ge 0$ The critical valuesfrom factoring the numerator are -3, 5.The denominator is zero at $x = 2$.Place on number line, and test sections. -3 0 2 5 Sequences		37-3x = 4x+2 35 = 7x 5 = x Great! But the only problem is that x = 5 does not CHECK!!!! There is no solution. Extraneous root. Motto: Always CHECK ANSWERS.
CHECK ANSWERS. Answer only $x = 9$. Functions: A function is a set of ordered pairs in which each <i>x</i> -element has only ONE <i>y</i> -element associated with it. Vertical Line Test: is this graph a function? Domain: <i>x</i> -values used; Range: <i>y</i> -values used Onto: all elements in B used. 1-to-1: no element in B used more than once. Composition: $(f \circ g)(x) = f(g(x))$ Inverse functions $f \& g: f(g(x)) = g(f(x)) = x$ Horizontal line test: will inverse be a function?	Arithmetic: $a_n = a_1 + (n-1)d$ $S_n = \frac{n(a_1 + a_n)}{2}$ Geometric: $a_n = a_1 \cdot r^{n-1}$ $S_n = \frac{a_1(1 - r^n)}{1 - r}$ Recursive: Example: $a_1 = 4; a_n = 2a_{n-1}$	$(x-h)^{2}$ $x^{2} + y^{2}$ Complex Rememined Methods $\frac{2}{\frac{x^{2}}{x} - \frac{4}{x}}$ $\frac{4}{\frac{2}{x} - \frac{2}{x^{2}}}$ Methods all.	bons of Circles: $x^2 + y^2 = r^2$ center origin $x^2 + (y-k)^2 = r^2$ center at (h,k) + Cx + Dy + E = 0 general form ex Fractions: User that the fraction bar means divide: 11: Get common denominator top and bottom $=\frac{2-4x}{\frac{4x-2}{x^2}} = \frac{2-4x}{x^2} \div \frac{4x-2}{x^2} = \frac{2-4x}{x^2} \cdot \frac{x^2}{4x-2} = -1$ 12: Mult. all terms by common denominator for
Transformations: -f(x) over x-axis; $f(-x)$ over y-axis f(x+a) horizontal shift; $f(x)+a$ vertical shift f(ax) stretch horizontal; $af(x)$ stretch vertical	Binomial Theorem: $(a+b)^{n} = \sum_{k=0}^{n} {n \choose k} a^{n-k} b^{k}$	$\frac{\frac{2}{x^{2}} - \frac{4}{x}}{\frac{4}{x} - \frac{2}{x^{2}}}$	$= \frac{x^2 \cdot \frac{2}{x^2} - x^2 \cdot \frac{4}{x}}{x^2 \cdot \frac{4}{x} - x^2 \cdot \frac{2}{x^2}} = \frac{2 - 4x}{4x - 2} = -1$



Statistics and Probability -Things to Remember! Statistics: $mean = \overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$ *median* = middle number in ordered data *mode* = value occurring most often *range* = difference between largest and smallest mean absolute deviation (MAD): population $MAD = \frac{1}{n} \sum_{i=1}^{n} |x_i - \overline{x}|$ variance: population variance = $(\sigma x)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$ standard deviation: *population* standard deviation = $\sigma x = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2}$

Sx = sample standard deviation σ_x = population standard deviation



Binomial Probability ${}_{n}C_{r} \bullet p^{r} \bullet q^{n-r}$ "**exactly**" *r* times or $\binom{n}{r} \bullet p^{r} \bullet (1-p)^{n-r}$ [TI Calculator: binompdf(*n*, *p*, *r*)]

When computing "**at least**" and "**at most**" probabilities, it is necessary to consider, in addition to the given probability,

• all probabilities larger than the given probability (**''at least**'') [TI Calculator: 1 – binomcdf(*n*, *p*, *r*-1)]

• all probabilities smaller than the given probability ("**at most**") [TI Calculator: binomcdf(*n*, *p*, *r*)] **Probability Permutation:** without replacement and order matters

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

Combination: without replacement and order does not matter

$$_{n}C_{r} = \binom{n}{r} = \frac{nP_{r}}{r!} = \frac{n!}{r!(n-r)!}$$

Empirical Probability $P(E) = \frac{\text{\# of times event } E \text{ occurs}}{\text{total \# of observed occurrences}}$

Theoretical Probability $P(E) = \frac{n(E)}{n(S)} = \frac{\text{\# of outcomes in } E}{\text{total \# of outcomes in } S}$

 $P(A \text{ and } B) = P(A) \bullet P(B)$ for independent events $P(A \text{ and } B) = P(A) \bullet P(B|A)$ for dependent events

$$P(A') = 1 - P(A)$$

P(A or B) = P(A) + P(B) - P(A and B)for not mutually exclusive

$$P(A \text{ or } B) = P(A) + P(B)$$

for mutually exclusive

 $P(B | A) = \frac{P(A \text{ and } B)}{P(A)}$ (conditional)